Navya Yadav

Navya Yadav

Reliability at Scale: How Simulation-Based Evaluation Accelerates AI Agent Deployment

Reliability at Scale: How Simulation-Based Evaluation Accelerates AI Agent Deployment

TL;DR Reliable AI agents require continuous evaluation across multi-turn conversations, not just single-response testing. Teams should run simulation-based evaluations with realistic scenarios and personas, measure session-level metrics like task success and latency, and bridge lab testing with production observability. This approach catches failures early, validates improvements, and maintains quality
Navya Yadav
Agent Evaluation for Multi-Turn Consistency: What Works and What Doesn’t

Agent Evaluation for Multi-Turn Consistency: What Works and What Doesn’t

TL;DR: Multi-turn AI agents need layered evaluation metrics to maintain consistency and prevent failures. Successful evaluation combines session-level outcomes (task success, trajectory quality, efficiency) with node-level precision (tool accuracy, retry behavior, retrieval quality). By integrating LLM-as-a-Judge for qualitative assessment, running realistic simulations, and closing the feedback loop between testing
Navya Yadav
How to Test AI Reliability: Detect Hallucinations and Build End-to-End Trustworthy AI Systems

How to Test AI Reliability: Detect Hallucinations and Build End-to-End Trustworthy AI Systems

TL;DR AI reliability requires systematic hallucination detection and continuous monitoring across the entire lifecycle. Test core failure modes early: non-factual assertions, context misses, reasoning drift, retrieval errors, and domain-specific gaps. Build an end-to-end pipeline with prompt engineering, multi-turn simulations, hybrid evaluations (programmatic checks, statistical metrics, LLM-as-a-Judge, human review), and
Navya Yadav