AI Reliability

How to Test AI Reliability: Detect Hallucinations and Build End-to-End Trustworthy AI Systems

How to Test AI Reliability: Detect Hallucinations and Build End-to-End Trustworthy AI Systems

TL;DR AI reliability requires systematic hallucination detection and continuous monitoring across the entire lifecycle. Test core failure modes early: non-factual assertions, context misses, reasoning drift, retrieval errors, and domain-specific gaps. Build an end-to-end pipeline with prompt engineering, multi-turn simulations, hybrid evaluations (programmatic checks, statistical metrics, LLM-as-a-Judge, human review), and
Navya Yadav